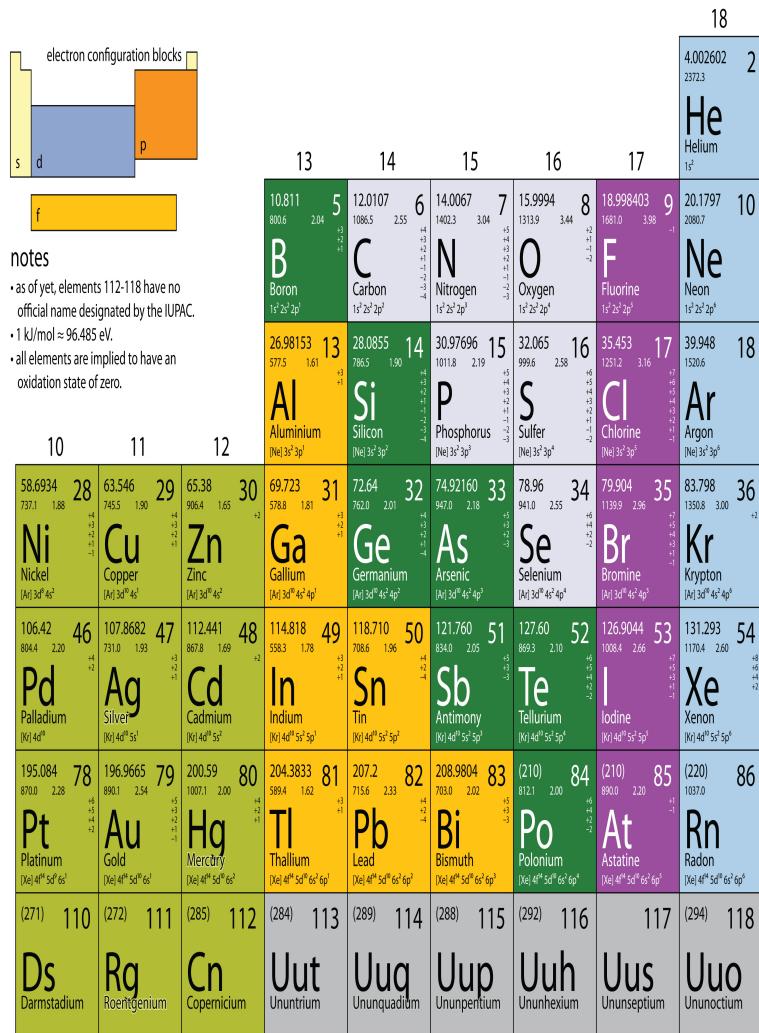

Chapter 17

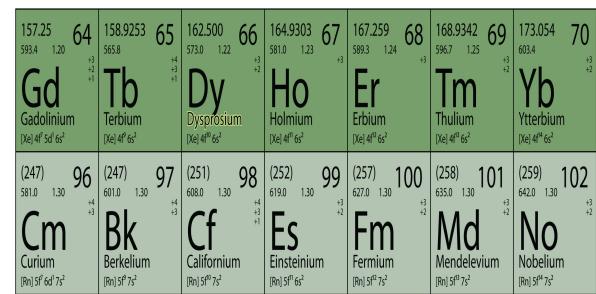
Appendix: Periodic Table of the Elements

In this chapter, we present some data on the chemical elements. The periodic table, introduced in [Chapter 3 "Atoms, Molecules, and Ions"](#), lists all the known chemical elements, arranged by atomic number (that is, the number of protons in the nucleus). The periodic table is arguably the best tool in all of science; no other branch of science can summarize its fundamental constituents in such a concise and useful way. Many of the physical and chemical properties of the elements are either known or understood based on their positions on the periodic table. Periodic tables are available with a variety of chemical and physical properties listed in each element's box. What follows here is a more complex version of the periodic table than what was presented in [Chapter 3 "Atoms, Molecules, and Ions"](#). The Internet is a great place to find periodic tables that contain additional information.

One item on most periodic tables is the atomic mass of each element. For many applications, only one or two decimal places are necessary for the atomic mass. However, some applications (especially nuclear chemistry; see [Chapter 15 "Nuclear Chemistry"](#)) require more decimal places. The atomic masses in [Table 17.1 "The Basics of the Elements of the Periodic Table"](#) represent the number of decimal places recognized by the International Union of Pure and Applied Chemistry, the worldwide body that develops standards for chemistry. The atomic masses of some elements are known very precisely, to a large number of decimal places. The atomic masses of other elements, especially radioactive elements, are not known as precisely. Some elements, such as lithium, can have varying atomic masses depending on how their isotopes are isolated.


The web offers many interactive periodic table resources. For example, see <http://www.ptable.com>.

The properties listed in each box are introduced throughout the text. Atomic masses may vary by source.


by Robert Creighton

The image shows a periodic table of elements with the following features:

- Electron Configuration Blocks:** A legend at the top left shows the following blocks: s (yellow), d (blue), p (orange), and f (yellow).
- Notes:** A section titled "notes" provides the following information:
 - as of yet, elements 112-118 have no official name designated by the IUPAC.
 - 1 kJ/mol \approx 96.485 eV.
 - all elements are implied to have an oxidation state of zero.
- Periodic Table Data:** The table includes atomic number, symbol, name, atomic mass, and electron configuration for each element. The table is organized into groups 13-18, 10-12, and 2-18.

This table lists the following elements:

157.25 593.4 1.20 Gd Gadolinium [Xe] 4f ⁷ 5d ¹ 6s ²	158.9253 565.8 Tb Terbium [Xe] 4f ⁹ 6s ¹	162.500 573.0 1.22 Dy Dysprosium [Xe] 4f ¹⁰ 6s ²	164.9303 581.0 1.23 Ho Holmium [Xe] 4f ¹¹ 6s ¹	167.259 589.3 1.24 Er Erbium [Xe] 4f ¹² 6s ¹	168.9342 598.7 1.25 Tm Thulium [Xe] 4f ¹³ 6s ¹	173.054 603.4 Yb Ytterbium [Xe] 4f ¹⁴ 6s ¹
(247) 96 581.0 1.30 Cm Curium [Rn] 5f ⁶ 6d ¹ 7s ²	(247) 97 601.0 1.30 Bk Berkelium [Rn] 5f ⁶ 7s ²	(251) 98 608.0 1.30 Cf Californium [Rn] 5f ⁶ 6s ²	(252) 99 619.0 1.30 Es Einsteinium [Rn] 5f ⁶ 7s ²	(257) 100 627.0 1.30 Fm Fermium [Rn] 5f ⁷ 7s ²	(258) 101 635.0 1.30 Md Mendelevium [Rn] 5f ⁸ 7s ²	(259) 102 642.0 1.30 No Nobelium [Rn] 5f ⁸ 7s ²