

Chapter 16

Organic Chemistry

Opening Essay

All life on Earth is ultimately based on photosynthesis—the process by which plants absorb CO₂ and H₂O from their environment and, in the presence of sunlight, convert those substances into a simple sugar (glucose) and ultimately starches and other building blocks of life. The net photosynthesis chemical reaction is as follows:

Oxygen is also a product of photosynthesis. Most forms of animal life (including people) depend on oxygen to breathe, which makes plants indispensable. Virtually all food sources come from plants, eaten either directly (as fruits, vegetables, or grains) or indirectly (as feedstock for meat animals such as cattle, poultry, pigs, sheep, goats, and the like). Plants are absolutely necessary for life to exist.

The net reaction for photosynthesis is misleadingly simple. A series of reactions, called light-dependent reactions, start by the absorption of light by pigments (not just chlorophyll, as commonly misunderstood) in plant cells. This is followed by a series of light-independent reactions, so named not because they happen in the dark but because they do not directly involve light; however, they involve the products of reactions stimulated by light, so they ultimately depend on light. The whole series of reactions involves many chemicals, enzymes, breaking and making chemical bonds, the transfer of electrons and H⁺ ions, and other chemical processes. The elucidation of the actual steps of photosynthesis—a process still unduplicated artificially—is a major achievement of modern chemistry.

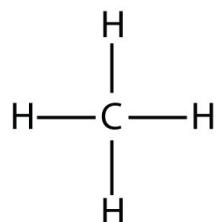
Organic chemistry is the study of the chemistry of carbon compounds. Why focus on carbon? Carbon has properties that give its chemistry unparalleled complexity. It

forms four covalent bonds, which give it great flexibility in bonding. It makes fairly strong bonds with itself (a characteristic called *catenation*), allowing for the formation of large molecules; it also forms fairly strong bonds with other elements, allowing for the possibility of a wide variety of substances. No other element demonstrates the versatility of carbon when it comes to making compounds. So an entire field of chemistry is devoted to the study of the compounds and reactivity of one element.

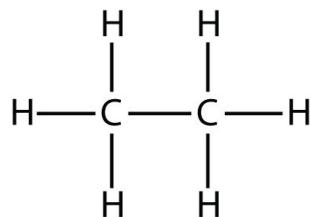
Because of the potential for complexity, chemists have defined a rather rigorous system to describe the chemistry of carbon. We will introduce some of that system in this chapter. Should you continue your study of chemistry beyond this text, you will find a much larger world of organic chemistry than we can cover in a single chapter.

16.1 Hydrocarbons

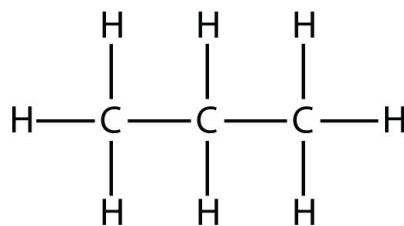
LEARNING OBJECTIVES


1. Identify alkanes, alkenes, alkynes, and aromatic compounds.
2. List some properties of hydrocarbons.

The simplest organic compounds are those composed of only two elements: carbon and hydrogen. These compounds are called **hydrocarbons**. Hydrocarbons themselves are separated into two types: aliphatic hydrocarbons and aromatic hydrocarbons. **Aliphatic hydrocarbons** are hydrocarbons based on chains of C atoms. There are three types of aliphatic hydrocarbons. **Alkanes** are aliphatic hydrocarbons with only single covalent bonds. **Alkenes** are hydrocarbons that contain at least one C–C double bond, and **alkynes** are hydrocarbons that contain a C–C triple bond. Occasionally, we find an aliphatic hydrocarbon with a ring of C atoms; these hydrocarbons are called *cycloalkanes* (or *cycloalkenes* or *cycloalkynes*).


Aromatic hydrocarbons have a special six-carbon ring called a *benzene* ring. Electrons in the benzene ring have special energetic properties that give benzene physical and chemical properties that are markedly different from alkanes. Originally, the term *aromatic* was used to describe this class of compounds because they were particularly fragrant. However, in modern chemistry the term *aromatic* denotes the presence of a six-membered ring that imparts different and unique properties to a molecule.

The simplest alkanes have their C atoms bonded in a straight chain; these are called *normal* alkanes. They are named according to the number of C atoms in the chain. The smallest alkane is methane:

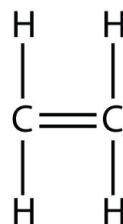


To make four covalent bonds, the C atom bonds to four H atoms, making the molecular formula for methane CH_4 . The diagram for methane is misleading, however; the four covalent bonds that the C atom makes are oriented three dimensionally toward the corners of a tetrahedron. A better representation of the methane molecule is shown in [Figure 16.1 "Three-Dimensional Representation of Methane"](#).

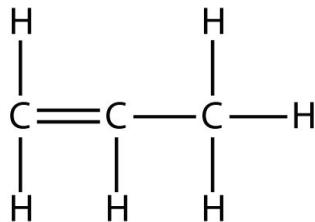
The next-largest alkane has two C atoms that are covalently bonded to each other. For each C atom to make four covalent bonds, each C atom must be bonded to three H atoms. The resulting molecule, whose formula is C_2H_6 , is ethane:

Propane has a backbone of three C atoms surrounded by H atoms. You should be able to verify that the molecular formula for propane is C₃H₈:

The diagrams representing alkanes are called **structural formulas** because they show the structure of the molecule. As molecules get larger, structural formulas become more and more complex. One way around this is to use a **condensed structural formula**, which lists the formula of each C atom in the backbone of the molecule. For example, the condensed structural formula for ethane is CH₃CH₃, while for propane it is CH₃CH₂CH₃. [Table 16.1 "The First 10 Alkanes"](#) gives the molecular formulas, the condensed structural formulas, and the names of the first 10 alkanes.

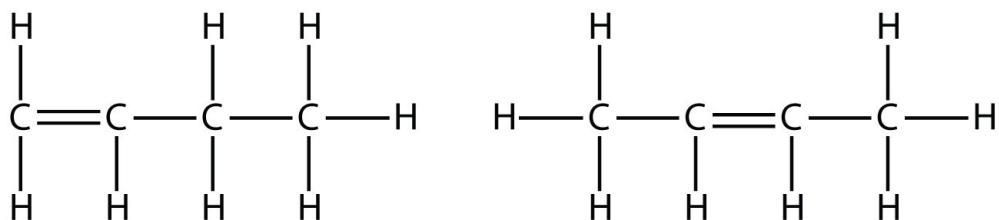

Table 16.1 The First 10 Alkanes

Molecular Formula	Condensed Structural Formula	Name
CH ₄	CH ₄	methane
C ₂ H ₆	CH ₃ CH ₃	ethane
C ₃ H ₈	CH ₃ CH ₂ CH ₃	propane
C ₄ H ₁₀	CH ₃ CH ₂ CH ₂ CH ₃	butane
C ₅ H ₁₂	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	pentane
C ₆ H ₁₄	CH ₃ (CH ₂) ₄ CH ₃	hexane
C ₇ H ₁₆	CH ₃ (CH ₂) ₅ CH ₃	heptane
C ₈ H ₁₈	CH ₃ (CH ₂) ₆ CH ₃	octane


Molecular Formula	Condensed Structural Formula	Name
C ₉ H ₂₀	CH ₃ (CH ₂) ₇ CH ₃	nonane
C ₁₀ H ₂₂	CH ₃ (CH ₂) ₈ CH ₃	decane

Because alkanes have the maximum number of H atoms possible according to the rules of covalent bonds, alkanes are also referred to as **saturated hydrocarbons**.

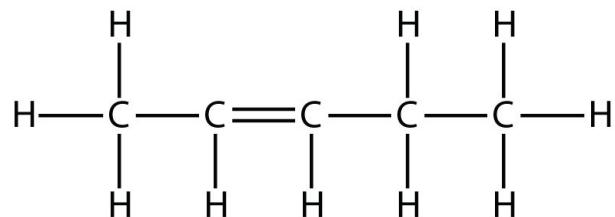
Alkenes have a C–C double bond. Because they have less than the maximum number of H atoms possible, they are called **unsaturated hydrocarbons**. The smallest alkene—ethene—has two C atoms and is also known by its common name ethylene:



The next largest alkene—propene—has three C atoms with a C–C double bond between two of the C atoms. It is also known as propylene:

What do you notice about the names of alkanes and alkenes? The names of alkenes are the same as their corresponding alkanes except that the ending is *-ene*, rather than *-ane*. Using a stem to indicate the number of C atoms in a molecule and an ending to represent the type of organic compound is common in organic chemistry, as we shall see.

With the introduction of the next alkene, butene, we begin to see a major issue with organic molecules: choices. With four C atoms, the C–C double bond can go between the first and second C atoms or between the second and third C atoms:

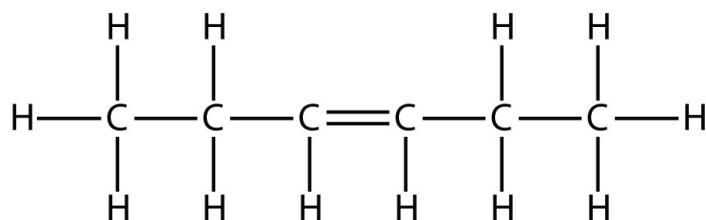


(A double bond between the third and fourth C atoms is the same as having it between the first and second C atoms, only flipped over.) The rules of naming in organic chemistry require that these two substances have different names. The first molecule is named *1-butene*, while the second molecule is named *2-butene*. The number at the beginning of the name indicates where the double bond originates. The lowest possible number is used to number a feature in a molecule; hence, calling the second molecule 3-butene would be incorrect. Numbers are common parts of organic chemical names because they indicate which C atom in a chain contains a distinguishing feature.

The compounds 1-butene and 2-butene have different physical and chemical properties, even though they have the same molecular formula— C_4H_8 . Different molecules with the same molecular formula are called **isomers**. Isomers are common in organic chemistry and contribute to its complexity.

EXAMPLE 1

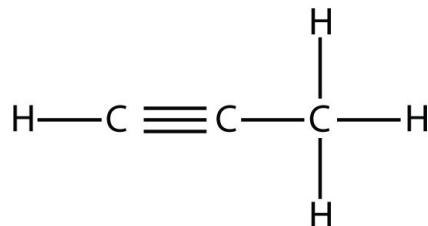
Based on the names for the butene molecules, propose a name for this molecule.


Solution

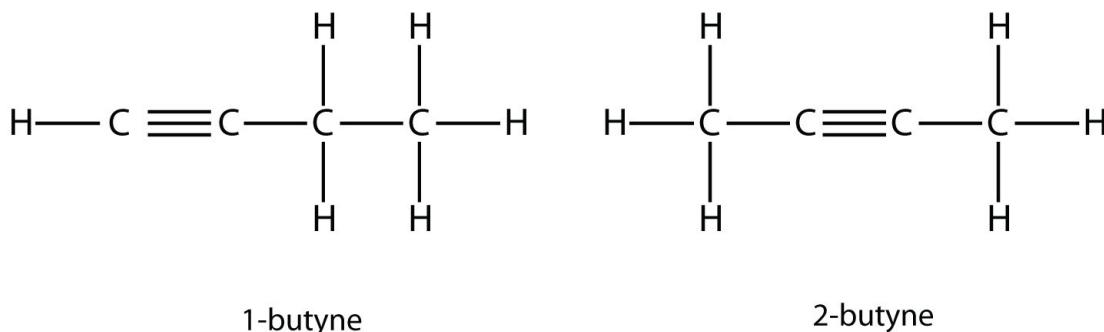
With five C atoms, we will use the *pent-* stem, and with a C–C double bond, this is an alkene, so this molecule is a pentene. In numbering the C atoms, we use the number 2 because it is the lower possible label. So this molecule is named 2-pentene.

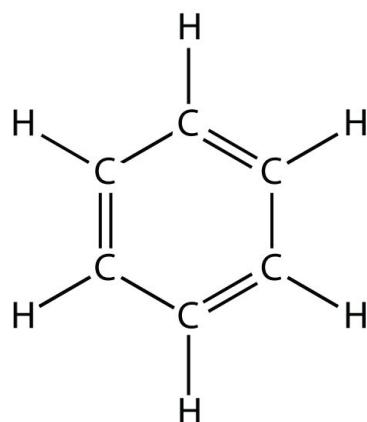
Test Yourself

Based on the names for the butene molecules, propose a name for this molecule.


Answer

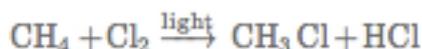
3-hexene


Alkynes, with a C–C triple bond, are named similarly to alkenes except their names end in *-yne*. The smallest alkyne is ethyne, which is also known as acetylene:

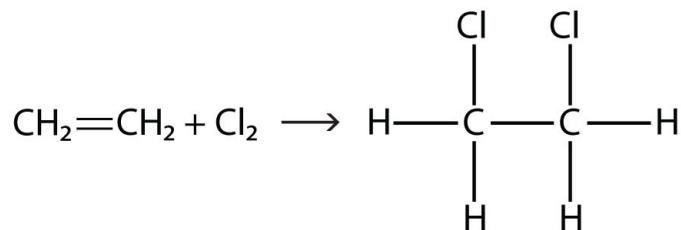

Propyne has the structure

With butyne, we need to start numbering the position of the triple bond, just as we did with alkenes:

Aromatic compounds contain the benzene unit. Benzene itself is composed of six C atoms in a ring, with alternating single and double C–C bonds:



The alternating single and double C–C bonds give the benzene ring a special stability, and it does not react like an alkene as might be suspected. Benzene has the molecular formula C_6H_6 ; in larger aromatic compounds, a different atom replaces one or more of the H atoms.


As fundamental as hydrocarbons are to organic chemistry, their properties and chemical reactions are rather mundane. Most hydrocarbons are nonpolar because of the close electronegativities of the C and H atoms. As such, they dissolve only sparingly in H_2O and other polar solvents. Small hydrocarbons, such as methane and ethane, are gases at room temperature, while larger hydrocarbons, such as hexane

and octane, are liquids. Even larger hydrocarbons are solids at room temperature and have a soft, waxy consistency.

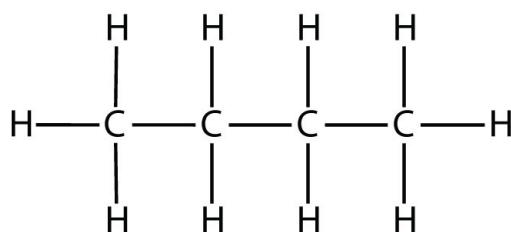
Hydrocarbons are rather unreactive, but they do participate in some classic chemical reactions. One common reaction is substitution with a halogen atom by combining a hydrocarbon with an elemental halogen. Light is sometimes used to promote the reaction, such as this one between methane and chlorine:

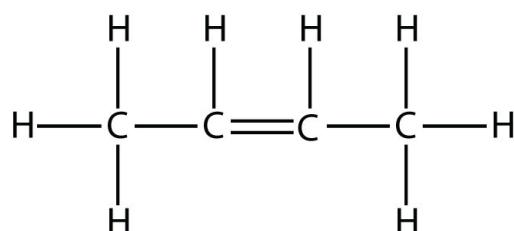
Halogens can also react with alkenes and alkynes, but the reaction is different. In these cases, the halogen reacts with the C–C double or triple bond and inserts itself onto each C atom involved in the multiple bonds. This reaction is called an addition reaction. One example is

The reaction conditions are usually mild; in many cases, the halogen reacts spontaneously with an alkene or an alkyne.

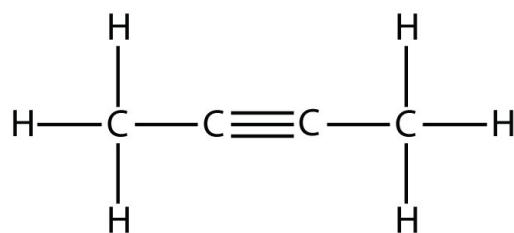
Hydrogen can also be added across a multiple bond; this reaction is called a **hydrogenation reaction**. In this case, however, the reaction conditions may not be mild; high pressures of H_2 gas may be necessary. A platinum or palladium catalyst is usually employed to get the reaction to proceed at a reasonable pace:

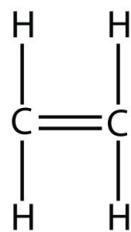
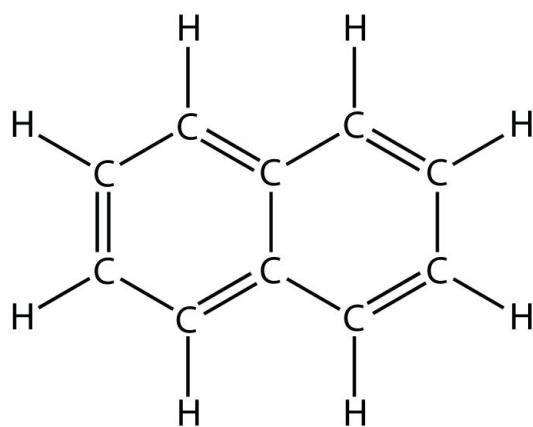
By far the most common reaction of hydrocarbons is combustion, which is the combination of a hydrocarbon with O_2 to make CO_2 and H_2O . The combustion of hydrocarbons is accompanied by a release of energy and is a primary source of energy production in our society ([Figure 16.2 "Combustion"](#)). The combustion reaction for gasoline, for example, which can be represented by C_8H_{18} , is as follows:

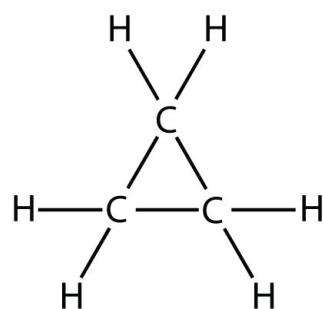


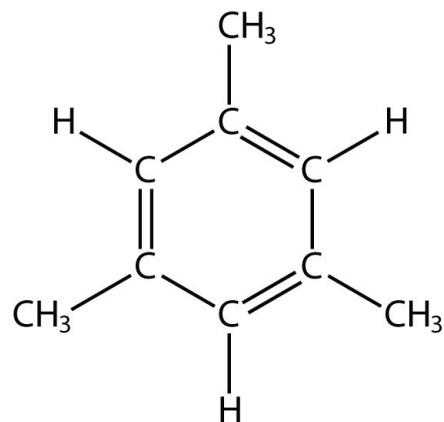
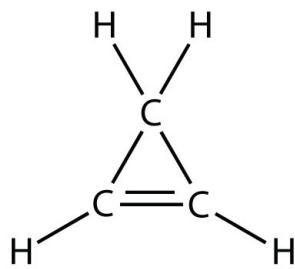

KEY TAKEAWAYS

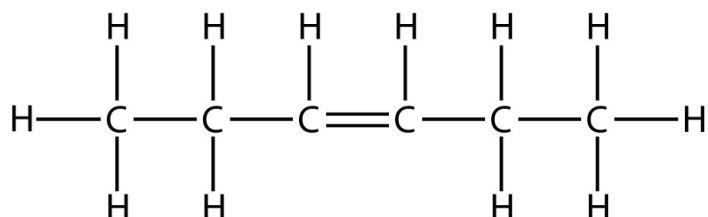
- The simplest organic compounds are hydrocarbons and are composed of carbon and hydrogen.
- Hydrocarbons can be aliphatic or aromatic; aliphatic hydrocarbons are divided into alkanes, alkenes, and alkynes.
- The combustion of hydrocarbons is a primary source of energy for our society.

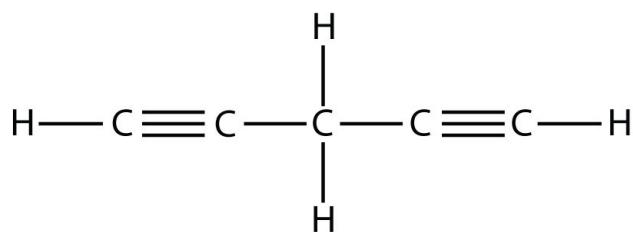
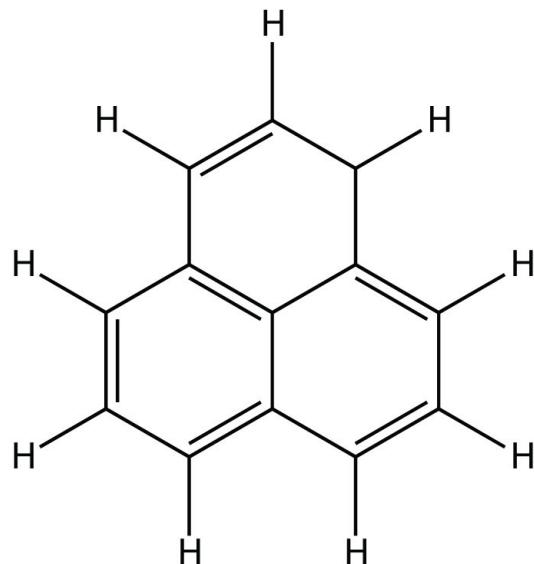

EXERCISES



1. Define *hydrocarbon*. What are the two general types of hydrocarbons?
2. What are the three different types of aliphatic hydrocarbons? How are they defined?
3. Indicate whether each molecule is an aliphatic or an aromatic hydrocarbon; if aliphatic, identify the molecule as an alkane, an alkene, or an alkyne.





4. Indicate whether each molecule is an aliphatic or an aromatic hydrocarbon; if aliphatic, identify the molecule as an alkane, an alkene, or an alkyne.





5. Indicate whether each molecule is an aliphatic or an aromatic hydrocarbon; if aliphatic, identify the molecule as an alkane, an alkene, or an alkyne.

6. Indicate whether each molecule is an aliphatic or an aromatic hydrocarbon; if aliphatic, identify the molecule as an alkane, an alkene, or an alkyne.

7. Name and draw the structural formulas for the four smallest alkanes.
8. Name and draw the structural formulas for the four smallest alkenes.
9. What does the term *aromatic* imply about an organic molecule?
10. What does the term *normal* imply when used for alkanes?
11. Explain why the name *1-propene* is incorrect. What is the proper name for this molecule?

12. Explain why the name *3-butene* is incorrect. What is the proper name for this molecule?

13. Name and draw the structural formula of each isomer of pentene.

14. Name and draw the structural formula of each isomer of hexyne.

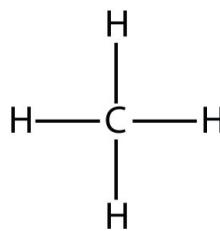
15. Write a chemical equation for the reaction between methane and bromine.

16. Write a chemical equation for the reaction between ethane and chlorine.

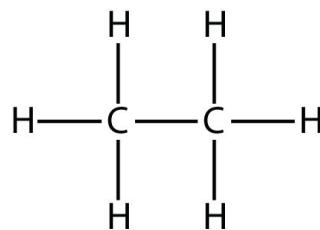
17. Draw the structure of the product of the reaction of bromine with propene.

18. Draw the structure of the product of the reaction of chlorine with 2-butene.

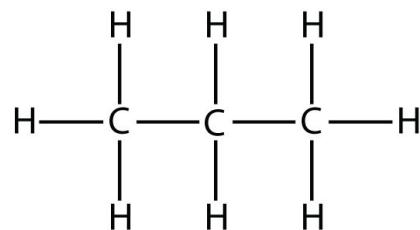
19. Draw the structure of the product of the reaction of hydrogen with 1-butene.


20. Draw the structure of the product of the reaction of hydrogen with 2-pentene.

21. Write the balanced chemical equation for the combustion of heptane.


22. Write the balanced chemical equation for the combustion of nonane.

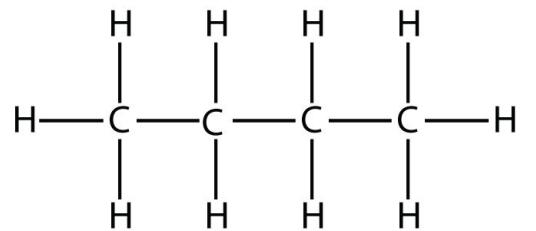
ANSWERS


1. an organic compound composed of only carbon and hydrogen; aliphatic hydrocarbons and aromatic hydrocarbons

3. a. aliphatic; alkane
b. aromatic
c. aliphatic; alkene

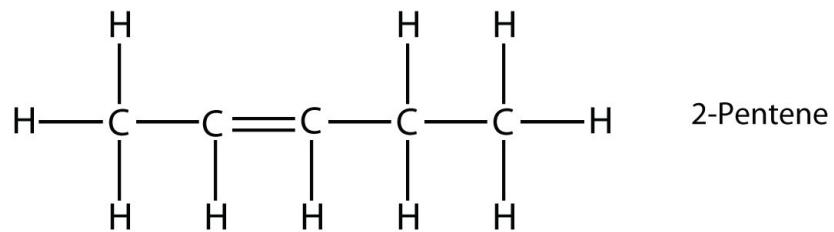
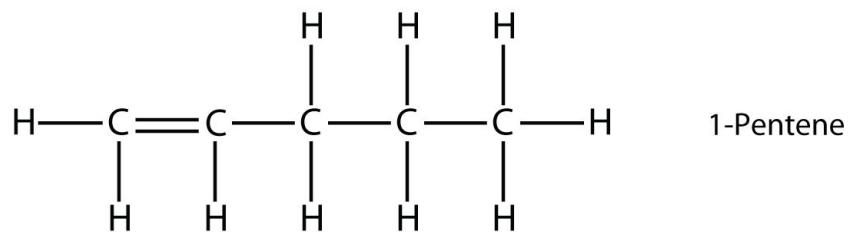
5. a. aliphatic; alkane
b. aliphatic; alkene
c. aromatic

- 7.

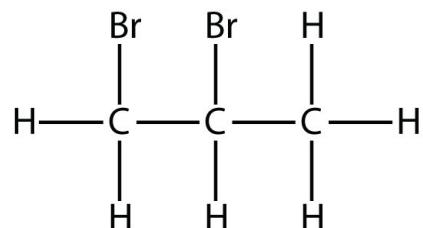

Methane

Ethane

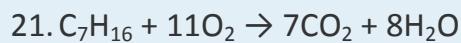
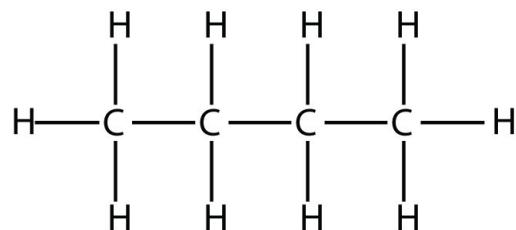
Propane

Butane


9. Aromatic means that the molecule has a benzene ring.

11. The 1 is not necessary. The name of the compound is simply *propene*.



13.

17.

19.

