


13.6 End-of-Chapter Material

ADDITIONAL EXERCISES

1. What is the relationship between the K_{sp} expressions for a chemical reaction and its reverse chemical reaction?
2. What is the relationship between the K_w value for H_2O and its reverse chemical reaction?
3. For the equilibrium
$$\text{PCl}_3(\text{g}) + \text{Cl}_2(\text{g}) \rightleftharpoons \text{PCl}_5(\text{g}) + 60 \text{ kJ}$$
list four stresses that serve to increase the amount of PCl_5 .
4. For the equilibrium
$$\text{N}_2\text{O}_4 + 57 \text{ kJ} \rightleftharpoons 2\text{NO}_2$$
list four stresses that serve to increase the amount of NO_2 .
5. Does a very large K_{eq} favor the reactants or the products? Explain your answer.

6. Is the K_{eq} for reactions that favor reactants large or small? Explain your answer.

7. Show that $K_a \times K_b = K_w$ by determining the expressions for these two reactions and multiplying them together.

8. Is the conjugate base of a strong acid weak or strong? Explain your answer.

9. What is the solubility in moles per liter of AgCl? Use data from [http://catalog.flatworldknowledge.com/bookhub/reader/2273 - ball-ch13_s05_s03_t01](http://catalog.flatworldknowledge.com/bookhub/reader/2273-ball-ch13_s05_s03_t01).

11. What is the solubility in moles per liter of Ca(OH)₂? Use data from [http://catalog.flatworldknowledge.com/bookhub/reader/2273 - ball-ch13_s05_s03_t01](http://catalog.flatworldknowledge.com/bookhub/reader/2273-ball-ch13_s05_s03_t01).

13. Under what conditions is $K_{\text{eq}} = K_p$?

15. Under what conditions is $K_{\text{eq}} > K_p$ when the temperature is 298 K?

17. What is the pH of a saturated solution of Mg(OH)₂? Use data from [http://catalog.flatworldknowledge.com/bookhub/reader/2273 - ball-ch13_s05_s03_t01](http://catalog.flatworldknowledge.com/bookhub/reader/2273-ball-ch13_s05_s03_t01).

19. What are the pH and the pOH of a saturated solution of Fe(OH)₃?

The K_{sp} of Fe(OH)₃ is 2.8×10^{-39} .

21. For a salt that has the general formula MX , an ICE chart shows that the K_{sp} is equal to x^2 , where x is the concentration of the cation. What is the appropriate formula for the K_{sp} of a salt that has a general formula of MX_2 ?

22. Referring to Exercise 15, what is the appropriate formula for the K_{sp} of a salt that has a general formula of M_2X_3 if the concentration of the cation is defined as $2x$, rather than x ?

23. Consider a saturated solution of $PbBr_2(s)$. If $[Pb^{2+}]$ is $1.33 \times 10^{-5} M$, find each of the following.

- $[Br^-]$
- the K_{sp} of $PbBr_2(s)$

24. Consider a saturated solution of $Pb_3(PO_4)_2(s)$. If $[Pb^{2+}]$ is $7.34 \times 10^{-14} M$, find each of the following.

- $[PO_4^{3-}]$
- the K_{sp} of $Pb_3(PO_4)_2(s)$

ANSWERS

- They are reciprocals of each other.
- increase the pressure; decrease the temperature; add PCl_3 ; add Cl_2 ; remove PCl_5

5. favor products because the numerator of the ratio for the K_{eq} is larger than the denominator

$$7. K_a \times K_b = \frac{[\text{H}^+][\text{X}^-]}{[\text{HX}]} \times \frac{[\text{HX}][\text{OH}^-]}{[\text{X}^-]} = [\text{H}^+][\text{OH}^-] = K_w$$

9. $1.3 \times 10^{-5} \text{ mol/L}$

11. $K_{\text{eq}} = K_p$ when the number of moles of gas on both sides of the reaction is the same.

13.10.35

$15.4x^3$

17. a. $2.66 \times 10^{-5} \text{ M}$
b. 9.41×10^{-15}