

Chapter 13

Chemical Equilibrium

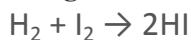
Opening Essay

Imagine you are stranded in a rowboat in the middle of the ocean. Suddenly, your boat springs a small leak, and you need to bail out water. You grab a bucket and begin to bail. After a few minutes, your efforts against the leak keep the water to only about half an inch, but any further bailing doesn't change the water level; the leak brings in as much water as you bail out.

You are at *equilibrium*. Two opposing processes have reached the same speed, and there is no more overall change in the process.

Chemical reactions are like that as well. Most of them come to an equilibrium. The actual position of the equilibrium—whether it favors the reactants or the products—is characteristic of a chemical reaction; it is difficult to see just by looking at the balanced chemical equation. But chemistry has tools to help you understand the equilibrium of chemical reactions—the focus of our study in this chapter.

So far in this text, when we present a chemical reaction, we have implicitly assumed that the reaction goes to completion. Indeed, our stoichiometric calculations were based on this; when we asked how much of a product is produced when so much of a reactant reacts, we are assuming that *all* of a reactant reacts. However, this is usually not the case; many reactions do not go to completion, and many chemists have to deal with that. In this chapter, we will study this phenomenon and see ways in which we can affect the extent of chemical reactions.


13.1 Chemical Equilibrium

LEARNING OBJECTIVES

1. Define *chemical equilibrium*.

2. Recognize chemical equilibrium as a dynamic process.

Consider the following reaction occurring in a closed container (so that no material can go in or out):

This is simply the reaction between elemental hydrogen and elemental iodine to make hydrogen iodide. The way the equation is written, we are led to believe that the reaction goes to completion, that all the H_2 and the I_2 react to make HI .

However, this is not the case. The reverse chemical reaction is also taking place:

It acts to undo what the first reaction does. Eventually, the reverse reaction proceeds so quickly that it matches the speed of the forward reaction. When that happens, any continued overall reaction stops: the reaction has reached **chemical equilibrium** (sometimes just spoken as *equilibrium*; plural *equilibria*), the point at which the forward and reverse processes balance each other's progress.

Because two opposing processes are occurring at once, it is conventional to represent an equilibrium using a double arrow, like this:

The double arrow implies that the reaction is going in both directions. Note that the reaction must still be balanced.

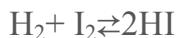
EXAMPLE 1

Write the equilibrium equation that exists between calcium carbonate as a reactant and calcium oxide and carbon dioxide as products.

Solution

As this is an equilibrium situation, a double arrow is used. The equilibrium equation is written as follows:

Test Yourself


Write the equilibrium equation between elemental hydrogen and elemental oxygen as reactants and water as the product.

Answer

One thing to note about equilibrium is that the reactions do not stop; both the forward reaction and the reverse reaction continue to occur. They both occur at the same rate, so any overall change by one reaction is cancelled by the reverse reaction. We say that chemical equilibrium is *dynamic*, rather than static. Also, because both reactions are occurring simultaneously, the equilibrium can be written backward.

For example, representing an equilibrium as

is the same thing as representing the same equilibrium as

The reaction must be at equilibrium for this to be the case, however.

KEY TAKEAWAYS

- Chemical reactions eventually reach equilibrium, a point at which forward and reverse reactions balance each other's progress.
- Chemical equilibria are dynamic: the chemical reactions are always occurring; they just cancel each other's progress.

EXERCISES

1. Define *chemical equilibrium*. Give an example.
2. Explain what is meant when it is said that chemical equilibrium is dynamic.
3. Write the equilibrium equation between elemental hydrogen and elemental chlorine as reactants and hydrochloric acid as the product.
4. Write the equilibrium equation between iron(III) sulfate as the reactant and iron(III) oxide and sulfur trioxide as the products.
5. Graphite and diamond are two forms of elemental carbon. Write the equilibrium equation between these two forms in two different ways.
6. At 1,500 K, iodine molecules break apart into iodine atoms. Write the equilibrium equation between these two species in two different ways.

ANSWERS

1. the situation when the forward and reverse chemical reactions occur, leading to no additional net change in the reaction position; $\text{H}_2 + \text{I}_2 \rightleftharpoons 2\text{HI}$ (answers will vary)
3. $\text{H}_2 + \text{Cl}_2 \rightleftharpoons 2\text{HCl}$
5. $\text{C} \text{ (gra)} \rightleftharpoons \text{C} \text{ (dia)}$; $\text{C} \text{ (dia)} \rightleftharpoons \text{C} \text{ (gra)}$

