

12.5 Autoionization of Water

LEARNING OBJECTIVES

1. Describe the autoionization of water.

2. Calculate the concentrations of H^+ and OH^- in solutions, knowing the other concentration.

We have already seen that H_2O can act as an acid or a base:

It may not surprise you to learn, then, that within any given sample of water, some H_2O molecules are acting as acids, and other H_2O molecules are acting as bases. The chemical equation is as follows:

This occurs only to a very small degree: only about 6×10^{-8} H_2O molecules are participating in this process, which is called the **autoionization of water**. At this level, the concentration of both $\text{H}^+(\text{aq})$ and $\text{OH}^-(\text{aq})$ in a sample of pure H_2O is about $1.0 \times 10^{-7} \text{ M}$. If we use square brackets—[]—around a dissolved species to imply the molar concentration of that species, we have

$$[\text{H}^+] = [\text{OH}^-] = 1.0 \times 10^{-7} \text{ M}$$

for *any* sample of pure water because H_2O can act as both an acid and a base. The

product of these two concentrations is 1.0×10^{-14} :

$$[\text{H}^+] \times [\text{OH}^-] = (1.0 \times 10^{-7})(1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$$

In acids, the concentration of $\text{H}^+(\text{aq})$ — $[\text{H}^+]$ —is greater than $1.0 \times 10^{-7} \text{ M}$, while for bases the concentration of $\text{OH}^-(\text{aq})$ — $[\text{OH}^-]$ —is greater than $1.0 \times 10^{-7} \text{ M}$. However, the *product* of the two concentrations— $[\text{H}^+][\text{OH}^-]$ —is *always* equal to 1.0×10^{-14} , no matter whether the aqueous solution is an acid, a base, or neutral:

$$[\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14}$$

This value of the product of concentrations is so important for aqueous solutions that it is called the **autoionization constant of water** and is denoted K_w :

$$K_w = [\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14}$$

This means that if you know $[\text{H}^+]$ for a solution, you can calculate what $[\text{OH}^-]$ has to be for the product to equal 1.0×10^{-14} , or if you know $[\text{OH}^-]$, you can calculate $[\text{H}^+]$.

This also implies that as one concentration goes up, the other must go down to compensate so that their product always equals the value of K_w .

EXAMPLE 9

What is $[\text{OH}^-]$ of an aqueous solution if $[\text{H}^+]$ is $1.0 \times 10^{-4} \text{ M}$?

Solution

Using the expression and known value for K_w ,

$$K_w = [\text{H}^+][\text{OH}^-] = 1.0 \times 10^{-14} = (1.0 \times 10^{-4})[\text{OH}^-]$$

We solve by dividing both sides of the equation by 1.0×10^{-4} :

$$[\text{OH}^-] = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-4}} = 1.0 \times 10^{-10} \text{ M}$$

It is assumed that the concentration unit is molarity, so $[\text{OH}^-]$ is $1.0 \times 10^{-10} \text{ M}$.

Test Yourself

What is $[\text{H}^+]$ of an aqueous solution if $[\text{OH}^-]$ is $1.0 \times 10^{-9} \text{ M}$?

Answer

$$1.0 \times 10^{-5} \text{ M}$$

When you have a solution of a particular acid or base, you need to look at the formula of the acid or base to determine the number of H^+ or OH^- ions in the formula unit because $[\text{H}^+]$ or $[\text{OH}^-]$ may not be the same as the concentration of the acid or base itself.

EXAMPLE 10

What is $[H^+]$ in a 0.0044 M solution of $Ca(OH)_2$?

Solution

We begin by determining $[OH^-]$. The concentration of the solute is 0.0044 M, but because $Ca(OH)_2$ is a strong base, there are two OH^- ions in solution for every formula unit dissolved, so the actual $[OH^-]$ is two times this, or $2 \times 0.0044\text{ M} = 0.0088\text{ M}$. Now we can use the K_w expression:

$$[H^+][OH^-] = 1.0 \times 10^{-14} = [H^+](0.0088\text{ M})$$

Dividing both sides by 0.0088:

$$[H^+] = \frac{1.0 \times 10^{-14}}{(0.0088)} = 1.1 \times 10^{-12}\text{ M}$$

$[H^+]$ has decreased significantly in this basic solution.

Test Yourself

What is $[OH^-]$ in a 0.00032 M solution of H_2SO_4 ? (Hint: assume both H^+ ions ionize.)

Answer

$$1.6 \times 10^{-11}\text{ M}$$

For strong acids and bases, $[H^+]$ and $[OH^-]$ can be determined directly from the concentration of the acid or base itself because these ions are 100% ionized by definition. However, for weak acids and bases, this is not so. The degree, or percentage, of ionization would need to be known before we can determine $[H^+]$ and $[OH^-]$.

EXAMPLE 11

A 0.0788 M solution of $HC_2H_3O_2$ is 3.0% ionized into H^+ ions and $C_2H_3O_2^-$ ions. What are $[H^+]$ and $[OH^-]$ for this solution?

Solution

Because the acid is only 3.0% ionized, we can determine $[H^+]$ from the concentration of the acid. Recall that 3.0% is 0.030 in decimal form:

$$[H^+] = 0.030 \times 0.0788 = 0.00236 \text{ M}$$

With this $[H^+]$, then $[OH^-]$ can be calculated as follows:

$$[OH^-] = \frac{1.0 \times 10^{-14}}{0.00236} = 4.2 \times 10^{-12} \text{ M}$$

This is about 30 times higher than would be expected for a strong acid of the same concentration.

Test Yourself

A 0.0222 M solution of pyridine (C_5H_5N) is 0.44% ionized into pyridinium ions ($C_5H_5NH^+$) and OH^- ions. What are $[OH^-]$ and $[H^+]$ for this solution?

Answer

$$[\text{OH}^-] = 9.77 \times 10^{-5} \text{ M}; [\text{H}^+] = 1.02 \times 10^{-10} \text{ M}$$

KEY TAKEAWAY

- In any aqueous solution, the product of $[\text{H}^+]$ and $[\text{OH}^-]$ equals 1.0×10^{-14} .

EXERCISES

1. Does $[\text{H}^+]$ remain constant in all aqueous solutions? Why or why not?
2. Does $[\text{OH}^-]$ remain constant in all aqueous solutions? Why or why not?
3. What is the relationship between $[\text{H}^+]$ and K_w ? Write a mathematical expression that relates them.
4. What is the relationship between $[\text{OH}^-]$ and K_w ? Write a mathematical expression that relates them.
5. Write the chemical equation for the autoionization of water and label the conjugate acid-base pairs.
6. Write the reverse of the reaction for the autoionization of water. It is still an acid-base reaction? If so, label the acid and base.
7. For a given aqueous solution, if $[\text{H}^+] = 1.0 \times 10^{-3} \text{ M}$, what is $[\text{OH}^-]$?
8. For a given aqueous solution, if $[\text{H}^+] = 1.0 \times 10^{-9} \text{ M}$, what is $[\text{OH}^-]$?
9. For a given aqueous solution, if $[\text{H}^+] = 7.92 \times 10^{-5} \text{ M}$, what is $[\text{OH}^-]$?

10. For a given aqueous solution, if $[H^+] = 2.07 \times 10^{-11} M$, what is $[H^+]$?

11. For a given aqueous solution, if $[OH^-] = 1.0 \times 10^{-5} M$, what is $[H^+]$?

12. For a given aqueous solution, if $[OH^-] = 1.0 \times 10^{-12} M$, what is $[H^+]$?

13. For a given aqueous solution, if $[OH^-] = 3.77 \times 10^{-4} M$, what is $[H^+]$?

14. For a given aqueous solution, if $[OH^-] = 7.11 \times 10^{-10} M$, what is $[H^+]$?

15. What are $[H^+]$ and $[OH^-]$ in a 0.344 M solution of HNO_3 ?

16. What are $[H^+]$ and $[OH^-]$ in a 2.86 M solution of HBr ?

17. What are $[H^+]$ and $[OH^-]$ in a 0.00338 M solution of KOH ?

18. What are $[H^+]$ and $[OH^-]$ in a $6.02 \times 10^{-4} M$ solution of $Ca(OH)_2$?

19. If HNO_2 is dissociated only to an extent of 0.445%, what are $[H^+]$ and $[OH^-]$ in a 0.307 M solution of HNO_2 ?

20. If $(C_2H_5)_2NH$ is dissociated only to an extent of 0.077%, what are $[H^+]$ and $[OH^-]$ in a 0.0955 M solution of $(C_2H_5)_2NH$?

ANSWERS

1. $[H^+]$ varies with the amount of acid or base in a solution.

3. $[H^+] = K_w[OH^-]$

7. $1.0 \times 10^{-11} \text{ M}$

9. $1.26 \times 10^{-10} \text{ M}$

11. $1.0 \times 10^{-9} \text{ M}$

13. $2.65 \times 10^{-11} \text{ M}$

15. $[\text{H}^+] = 0.344 \text{ M}$; $[\text{OH}^-] = 2.91 \times 10^{-14} \text{ M}$

17. $[\text{OH}^-] = 0.00338 \text{ M}$; $[\text{H}^+] = 2.96 \times 10^{-12} \text{ M}$

19. $[\text{H}^+] = 0.00137 \text{ M}$; $[\text{OH}^-] = 7.32 \times 10^{-12} \text{ M}$

