




## 5.7 End-of-Chapter Material

### ADDITIONAL EXERCISES

1. How many molecules of  $\text{O}_2$  will react with  $6.022 \times 10^{23}$  molecules of  $\text{H}_2$  to make water? The reaction is  $2\text{H}_2(\text{g}) + \text{O}_2(\text{g}) \rightarrow 2\text{H}_2\text{O}(\ell)$ .
2. How many molecules of  $\text{H}_2$  will react with  $6.022 \times 10^{23}$  molecules of  $\text{N}_2$  to make ammonia? The reaction is  $\text{N}_2(\text{g}) + 3\text{H}_2(\text{g}) \rightarrow 2\text{NH}_3(\text{g})$ .
3. How many moles are present in 6.411 kg of  $\text{CO}_2$ ? How many molecules is this?

4. How many moles are present in 2.998 mg of  $\text{SCl}_4$ ? How many molecules is this?

5. What is the mass in milligrams of  $7.22 \times 10^{20}$  molecules of  $\text{CO}_2$ ?

6. What is the mass in kilograms of  $3.408 \times 10^{25}$  molecules of  $\text{SiS}_2$ ?

7. What is the mass in grams of 1 molecule of  $\text{H}_2\text{O}$ ?

8. What is the mass in grams of 1 atom of Al?

9. What is the volume of 3.44 mol of Ga if the density of Ga is 6.08 g/mL?

10. What is the volume of 0.662 mol of He if the density of He is 0.1785 g/L?

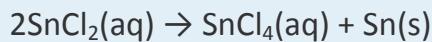
11. For the chemical reaction

$$2\text{C}_4\text{H}_{10}(g) + 13\text{O}_2(g) \rightarrow 8\text{CO}_2(g) + 10\text{H}_2\text{O}(l)$$

assume that 13.4 g of  $\text{C}_4\text{H}_{10}$  reacts completely to products. The density of  $\text{CO}_2$  is 1.96 g/L. What volume in liters of  $\text{CO}_2$  is produced?

12. For the chemical reaction

$$2\text{GaCl}_3(s) + 3\text{H}_2(g) \rightarrow 2\text{Ga}(l) + 6\text{HCl}(g)$$


if 223 g of  $\text{GaCl}_3$  reacts completely to products and the density of Ga is 6.08 g/mL, what volume in milliliters of Ga is produced?

13. Calculate the mass of each product when 100.0 g of  $\text{CuCl}$  react according to the reaction

$$2\text{CuCl}(aq) \rightarrow \text{CuCl}_2(aq) + \text{Cu}(s)$$


What do you notice about the sum of the masses of the products? What concept is being illustrated here?

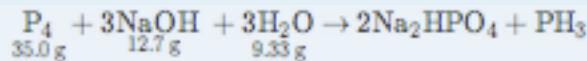
14. Calculate the mass of each product when 500.0 g of  $\text{SnCl}_2$  react according to the reaction



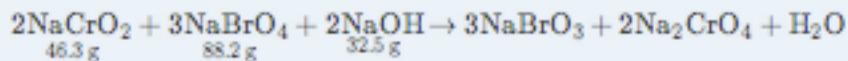
What do you notice about the sum of the masses of the products? What concept is being illustrated here?

15. What mass of  $\text{CO}_2$  is produced from the combustion of 1 gal of gasoline?

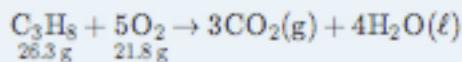
The chemical formula of gasoline can be approximated as  $\text{C}_8\text{H}_{18}$ . Assume that there are 2,801 g of gasoline per gallon.


16. What mass of  $\text{H}_2\text{O}$  is produced from the combustion of 1 gal of gasoline?

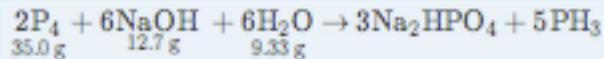
The chemical formula of gasoline can be approximated as  $\text{C}_8\text{H}_{18}$ . Assume that there are 2,801 g of gasoline per gallon.


17. A chemical reaction has a theoretical yield of 19.98 g and a percent yield of 88.40%. What is the actual yield?

18. A chemical reaction has an actual yield of 19.98 g and a percent yield of 88.40%. What is the theoretical yield?


19. Given the initial amounts listed, what is the limiting reagent, and how much of the other reactants are in excess?




20. Given the initial amounts listed, what is the limiting reagent, and how much of the other reactants are in excess?



21. Verify that it does not matter which product you use to predict the limiting reagent by using both products in this combustion reaction to determine the limiting reagent and the amount of the reactant in excess. Initial amounts of each reactant are given.



22. Just in case you suspect Exercise 21 is rigged, do it for another chemical reaction and verify that it does not matter which product you use to predict the limiting reagent by using both products in this combustion reaction to determine the limiting reagent and the amount of the reactant in excess. Initial amounts of each reactant are given.



## ANSWERS

1.  $1.2044 \times 10^{24}$  molecules
3. 145.7 mol;  $8.77 \times 10^{25}$  molecules
5. 52.8 mg
7.  $2.99 \times 10^{-23}$  g
9. 39.4 mL



11. 20.7 L

13. 67.91 g of  $\text{CuCl}_2$ ; 32.09 g of Cu. The two masses add to 100.0 g, the initial amount of starting material, demonstrating the law of conservation of matter.

15. 8,632 g

17. 17.66 g

19. The limiting reagent is NaOH; 21.9 g of  $\text{P}_4$  and 3.61 g of  $\text{H}_2\text{O}$  are left over.

21. Both products predict that  $\text{O}_2$  is the limiting reagent; 20.3 g of  $\text{C}_3\text{H}_8$  are left over.

